Biophysical properties and ionic signature of neuronal progenitors of the postnatal subventricular zone in situ.
نویسندگان
چکیده
Previous studies have reported the presence of neuronal progenitors in the subventricular zone (SVZ) and rostral migratory stream (RMS) of the postnatal mammalian brain. Although many studies have examined the survival and migration of progenitors after transplantation and the factors influencing their proliferation or differentiation, no information is available on the electrophysiological properties of these progenitors in a near-intact environment. Thus we performed whole cell and cell-attached patch-clamp recordings of progenitors in brain slices containing either the SVZ or the RMS from postnatal day 15 to day 25 mice. Both regions displayed strong immunoreactivity for nestin and neuron-specific class III beta-tubulin, and recorded cells displayed a morphology typical of the neuronal progenitors known to migrate throughout the SVZ and RMS to the olfactory bulb. Recorded progenitors had depolarized zero-current resting potentials (mean more depolarized than -28 mV), very high input resistances (about 4 GOmega), and lacked action potentials. Using the reversal potential of K+ currents through a cell-attached patch a mean resting potential of -59 mV was estimated. Recorded progenitors displayed Ca2+-dependent K+ currents and TEA-sensitive-delayed rectifying K+ (KDR) currents, but lacked inward K+ currents and transient outward K+ currents. KDR currents displayed classical kinetics and were also sensitive to 4-aminopyridine and alpha-dendrotoxin, a blocker of Kv1 channels. Na+ currents were found in about 60% of the SVZ neuronal progenitors. No developmental changes were observed in the passive membrane properties and current profile of neuronal progenitors. Together these data suggest that SVZ neuronal progenitors display passive membrane properties and an ionic signature distinct from that of cultured SVZ neuronal progenitors and mature neurons.
منابع مشابه
Olig2 directs astrocyte and oligodendrocyte formation in postnatal subventricular zone cells.
The subventricular zone (SVZ) in the neonatal mammalian forebrain simultaneously generates olfactory interneurons, astrocytes, and oligodendrocytes. The molecular cues that enable SVZ progenitors to generate three distinct cell lineages without a temporal switching mechanism are not known. Here, we demonstrate that the basic helix-loop-helix transcription factor Olig2 plays a central role in th...
متن کاملNeurogenesis in adult subventricular zone.
Much excitement has been generated by the identification of adult brain regions harboring neural stem cells and their continual generation of new neurons throughout life. This is an important departure from traditional views of the germinal potential of the postnatal brain. However, a more profound paradigm shift may be emerging. Studies of adult neurogenesis in the subventricular zone (SVZ) ha...
متن کاملMicroRNA-124 is a subventricular zone neuronal fate determinant.
New neurons are continuously generated from neural stem cells with astrocyte properties, which reside in close proximity to the ventricle in the postnatal and adult brain. In this study we found that microRNA-124 (miR-124) dictates postnatal neurogenesis in the mouse subventricular zone. Using a transgenic reporter mouse we show that miR-124 expression is initiated in the rapid amplifying proge...
متن کاملAdult Hippocampal Neurogenesis and Memory
Adult neurogenesis, a concept emergent in the late 1990s, is the generation of new neurons in the adult brain. This process occurs thank to cells who have this proliferative feature, named as Neural Stem Cells (NSCs). Neural Stem Cells (NSCs) are primary progenitors who can generate the two neural types (neurons and glia). Classically it was assumed that NSCs are only present in the embryo, but...
متن کاملAdult Hippocampal Neurogenesis and Memory
Adult neurogenesis, a concept emergent in the late 1990s, is the generation of new neurons in the adult brain. This process occurs thank to cells who have this proliferative feature, named as Neural Stem Cells (NSCs). Neural Stem Cells (NSCs) are primary progenitors who can generate the two neural types (neurons and glia). Classically it was assumed that NSCs are only present in the embryo, but...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 90 4 شماره
صفحات -
تاریخ انتشار 2003